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Here we give the proof of a general theorem concerning irreversibility that was 
stated earlier by Misra and Prigogine. In terms of a unitary group describing a 
deterministic dynamical evolution and a related Markov semigroup describing 
an associated coarse grained probabilistic evolution, it is shown that the original 
dynamics are necessarily those of a Kflow. Thus a reversible dynamics which 
permits such an intertwining to an irreversible description must possess a high 
degree of instability. 
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1. I N T R O D U C T I O N  

In the foundations of kinetic theory a traditional procedure for con- 
structing a probabilistic Markovian master equation from a given deter- 
ministic dynamics involved two steps: (a) impose a "coarse graining," and 
(b) go to a weak coupling limit to obtain the Markov property. Among the 
objections to this procedure are a lack of precise rigor in (a) and the 
approximate nature of the limit in (b). 

In Ref. 1 an approach is described whereby an exact Markovian 
master equation is obtained directly from a projection which intertwines 
the deterministic and probabilistic descriptions. The approach (1) depends 
on the following theorem. In the theorem, U, is a unitary evolution 
representing in state space a given deterministic measure preserving rever- 
sible dynamics T,, and W, is to be a strongly irreversible Markov 
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semigroup representing a probabilistic description brought about by a 
"coarse graining" projection P. 

Theorem.  For the existence of a "coarse graining" of T, implemen- 
ted by a projection P satisfying the conditions: 

(i) PU, p = PUtp' for all t ~ p = p' 

(ii) PU,=W*Pfor  t>10 

(iii) P is a positivity preserving self-adjoint projection 

(iv) P(1)= 1 

it is necessary and sufficient that the dynamical system be a Kflow. 
In the Theorem, the strongly irreversible Markov semigroup W, must 

satisfy the four conditions: (1) 

(i') IIW*p- 111 ~ 0  monotonically as t--, oo Vp>~O with ~pd#= 1 

(ii') W*(1)=  1 

(iii') W, is a positivity preserving contraction semigroup 

(iv') W,(1)= 1 

The general relation of irreversibility to the existence of coarse grained 
or similarity changes of representation is an intriguing question with 
important physical and mathematical implications. ~1 8) The sufficiency of 
the Theorem was demonstrated in Ref. 6. Our proof of the necessity 
depends on a connection to the theory of conditional expectation. ~ 

2. C O A R S E - G R A I N E D  I N T E R T W I N I N G  N E C E S S I T A T E S  
K - F L O W  D Y N A M I C S  

We recall the setting. (~'6) One is given a deterministic dynamics Tt in a 
physical phase space F described by a unitary evolution Ut in a state space 
LP2(F, ~ ,  #) according to 

(g,f)(x) = f ( T , x )  (1) 

x eF, f e ~ 2 ( F , # ) .  A coarse graining projection P is applied to the 
evolution, yielding the description 

W* =PU~P (2) 

See Ref. 6 for the proof that for any Kflow dynamics the coarse-grained 
evolution (2) possesses the properties stated in the Theorem. 

To establish here the Converse, namely, that under the conditions of 
the Theorem, the dynamics is necessarily that of a K flow, we recall that a 
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Kflow is a dynamical system (F, N', #, T,) with an order structure con- 
necting ~ subalgebras ~,  and a measure preserving dynamics T, satisfying 
the properties: 

(a) T, Bo=N,~_~s=T,~o,t<~s 
(b) V',_--~ N ' , = ~  

(c) N ~ ; % ~ , = ~ - ~  

where ~ co is the trivial a algebra generated by F and sets of measure 0. 
Here the space F is assumed compact and # is a positive measure nor- 
malized to/~(F) = 1. All ~,  are assumed separable. 

Proof of the necessity. We let 

P ,=  U ,PU, (3) 

for all t. With this family P , =  U, PU_, we wish to construct a Kflow. 
Consider first the case P =  P0. Clearly (9} Po is a conditional expec- 

tation and we thus know that there exists a (unique) a algebra N0 such that 
the range of P is 5f2(F, ~3o, #). Likewise, using U,(1)= 1, and the positivity 
of U, all P, are seen to be conditional expectations with ranges 
s2(v, ~,, #). 

Let us next prove that the ranges S2(F, ~,, la) are the "correct" ranges 
for a Kfiow with underlying dynamics defined by 24 = T,(N'o), i.e., that the 
~,  induced by the P, are consistent with those induced from the original 
dynamics. Let Q be the orthogonal projection of s1 7 6  onto 
S2(F ,  T,(~o), #). P, and Q are orthogonal projections, so to show they are 
equal we need only show they have the same ranges. Take f i n  R(Q), t h e n f  
is measurable with respect to the a algebra Tt(~o). From the definition of 
U, we see (U ,f)(s)=fET,(s)] is measurable, as the composition of two 
measurable functions, with respect to ~0. Then PU ,(f)= U ,(f), and 
P, ( f )=U,U_, ( f )=f  or f is in R(P,). A similar argument shows 
R(P,) c R(Q). 

Now that we have identified P, the imprimitivity condition 

U*P~ U, = P~. ~ (4) 

is easily checked. We next show the conditions (a), (b), and (c) of a Kflow 
are satisfied. 

To prove the monotone property (a) we first prove a special case. For  
s~>0 using (ii) we have P =P=U =PU=P=U =W*P=U_=PUs=P_,, 
or P_,P=P if s~>0. Suppose s<t. U*P=P,U,=U*P=U,U*P,U,= 
P,_,P= U*P,U, which follows from (4) above. Thus P=P,=P= for s<~t. 
This implies ~s-q ~ ,  in the sense that every element of ~ ,  differs from an 
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element of ~ by at most a set of measure zero. This gives (a) in the 
definition of a K flow. 

To establish (b) we let ~r ~ ~ .  Then d _ ~  in the above 
sense, but suppose there exists a set in ~ that is not equal almost 
everywhere to a set in d .  Then ~2(F ,  d ,  #) is properly contained in 
~ 2 ( F , ~ , # ) .  Pick f e Y ' 2 ( F , ~ , l ~ )  such that f is orthogonal to 
~2 (F ,  ~ ,  #). Then (f, Pt(g))= 0 for all t and all g, or P t ( f ) =  0 for all t. 
But U*PU~(f )=P_~( f )=O,  and P U t ( f ) = U , P  , ( f ) = 0 .  By ( i ) t h i s  
implies f = 0, and ~r = ~/F= - ~  ~, .  

To verify (c) let ~ _ ~ = ( - ] p = _ ~  Nt. Take f e ~ Z ( F , N  ~o, #) with 
f~>0, f r  Let g=f / (~ fd# )  as before so that ~gd#= 1. Condition (i') 
implies nW*g-111 ~ 0  as t ~ o o .  But N ~ r  for all t, and so for all t 
we have Pt(g) = g and W*(g) = W*P(g) = PUt(g) = U,P_t(g) = Ut(g). In 
order for U~(g) to converge to 1 in ~ 2  norm it must be true that g = 1 a.e., 
because II U t ( g ) -  111 = II g -  1 ]l. We have shown the only f >~ 0 with f r 0 in 
5r ~_o~, #) are constants. This implies ~ ~ is the trivial a algebra 
generated by sets of measure zero. 

Remark. It is not yet clear which dynamics are intrinsically necessary 
in intertwined similarity changes of representation W, = AURA-1. ~ 8) 
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